范本网工作计划内容页

八年级数学教学计划模板合集五篇

2024-11-17 06:20:01工作计划

大家眼前所欣赏的此篇共有13791文字,由窦英凯认真修订之后,上传于(meiword.com)!归纳(guī nà)八年级数学教学计划感谢大家来学习参考,希望能帮到你!

八年级数学说课稿 第一篇

《平方差公式》

我说课的内容是八年级上册第十四章《乘法公式》的第一课——平方差公式。我设计的说课共分四大环节:

一、教学设计理念

根据《课程标准》,数学课不仅是数学知识的学习,更要体现知识的认知发展过程,关注学生学习的兴趣,引导学生参与探索,在探索中获得对数学的体验与应用。

鉴于此,我对本节课的设计流程是:观察发现——归纳验证——应用拓展,以解决自主学习为基础,建立合理的数学训练,使学生在知识获得、过程经历、合作交流得到提升。

二、教材

(1) 教材的地位和作用

平方差公式是多项式乘法的后续学习及再创造活动的结果,体现教材从一般——特殊的意图,教材为学生在数学活动中“获得数学”的思想方法、能力素质提供了良好的契机,是学生感受数学再创造的好素材,同时对平方差公式在整式乘法、因式分解及其代数运算中起着举足轻重的作用,是今后学习的坚实基础。

(2) 教学目标

知识与技能:

理解和掌握平方差公式,并能灵活运用公式进行简单运算。

过程与方法:

经历平方差公式的探索,体会观察发现—归纳验证—应用拓展这一数学方法,培养学生、归纳能力。

情感态度与价值观:

感悟具体到抽象的探究方法(一般到特殊);通过几何验证感知数形结合思想。在应用中,激发学生学习兴趣和信心。

(3) 教学重点、难点

教学重点:理解、掌握平方差公式并能正确运用公式。

教学难点:明确公式的结构特征及对公式的变式运用。

三、教法与学法

(1)教法

本节课采用探究式教学法,从两项式的乘法中发现规律,又通过多项式的乘法法则进行验证及探究平方差公式的几何意义,从而培养学生观察概括能力,在探索中由旧到新,由学到“思”,由“思”到知识方法的提升,体验探索数学的方法,同时展示学生探索成果,让学生感受学习数学是一件快乐的事。

(2)学法

让学生学会从观察发现——归纳验证——应用拓展这一数学方法,以问题为线索,学生在动口、动手、动脑中使知识再创造,从中让学生明确获取知识只有通过自 己的探索才能不仅“知其然”,而且“知其所以然”,透过表象看公式特征,而不是死记硬背,在应用中学会知识的迁移,抓住公式的结构特征,提高灵活运用能力。

四、教学过程(略)

教学环节

教学内容

学生活动

设计意图

教案设计说明:

本节课主要是学习方差公式,它是多项式乘法的再创造,采用体验探索式教学法,让学生观察发现——归纳验证——应用拓展中收获学习数学方法,在教学中,给学生留有充分的时间和空间,激发学生的学习积极性。

通过探究的教学设计,为学生提供数学活动的机会,帮助他们在自主探索和合作交流的过程中,真正理解代数的基础知识、技能和思想方法,获得广泛的数学活动经验,提高学生探索、发现和创新能力。并让学生有条理地表达自己的思考过程,让学生沉浸于知识的探索中,为突破难点,采用小组合作,先体验后归纳,从中感悟数形结合及整体的数学思想,趣味应用题激发兴趣。师生互动,着重培养学生的观察概括能力,有意培养学生的推理能力。

五、有效性辅导

有效性辅导是提高英语教学有效性的延伸。教师要诊断学生在听课、作业、检测中遇到了不明白的问题,教师辅导学生的目的在于让学生清楚、明白这些问题。辅导可采用个别辅导,集体辅导,也可采用要点辅导,评语激励,把学生遇到问题中的基础知识落实到实处,减轻学生心理压力,从而提高学生的学习兴趣,增强学生学习自信心。

六、有效性反思

有效性反思是提高英语课堂教学有效性的再创造。反思是科研中常用的一个术语,不少人认为,反思就是“找不足”,这不完包含了反思的内涵,反思可以说“找问题”,也就是说反思是发现问题、提出问题、问题、解决问题的思考过程。有效性教学反思是指教师借助一定的科研方法不断探究与解决自身在教学过程中的得失,将“学会教学”与“学会学习”有机结合起来,努力提升自身教学实践的科学性,优化自己的教学过程,使自己成为高水平,学者型的教师。教学反思贯穿整个教学过程的始终(教学前反思,教学中反思,教学后反思),在整个教学过程中,通过反思,优化备课,优化课堂教学结构,优化辅导,优化检测,优化作业,从而提高每个环节,每节课的有效性。

总之,在实施新课程以来,有效性英语课堂教学实践是课改的关键,要实现“教得轻松,学得有效,考得满意”为落脚点的实效性教学模式,请你不妨从“有效性备课,有效性授课,有效性作业,有效性检测,有效性辅导,有效性反思”等方面来实践。

八年级数学教学计划 第二篇

一、班情

我所教的班级八年五班的学生数学基础相对较好,经七年级的数学学习,基本形成数学思维模式,具备一定的应用数学知识解决实际问题的能力,但在知识灵活应用上还是很欠缺,同时作答也比较粗心,学生两极分化比较严重。从上学期期末数学测试成绩可以看出与学校其它优秀班级相比,还存在一定的差距。

二、指导思想

以《初中数学新课程标准》为指导,开展新课程教学改革,对学生实施素质教育,切实激发学生学习数学的兴趣,掌握学习数学的方法和技巧,建立数学思维模式,培养学生探究思维的能力,提高学习数学、应用数学的能力。同时通过本期教学,完成八年级上学期数学教学任务。

三、教学目标

1、知识与技能目标

学生通过探究实际问题,认识三角形、全等三角形、轴对称、整式乘除和因式分解、分式,掌握2024规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,初步建立数形结合的思维模式。

2、过程与方法目标

掌握提取实际问题中的数学信息的能力,并用2024的代数和几何知识表达数量之间的相互关系;通过探究全等三角形的判定、轴对称性质进一步培养学生的识图能力;初步建立数形结合的数学模式;通过对整式乘除和因式分解的探究,培养学生发现规律和总结规律的能力,建立数学类比思想。

3、情感与态度目标

通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。

四、教材

第十一章 三角形主要学习三角形的三边关系、分类,三角形的内角、多边形的内外角和。本章节是后两章的基础,了解了相关的知识,教学时加强与实际的联系,加强推理能力的培养,开展好数学活动。

第十二章 全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

第十三章 轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。

第十四章 整式在形式上力求突出:整式及整式运算产生的实际背景——使学生经历实际问题“符号化”的过程,发展符号感;2024运算法则的探索过程——为探索2024运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握——设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。

第十五章 分式主要学习分式的概念、性质、能用基本性质进行约分和通分并进行相关的四则混合运算。教学时重视和分数类比,加强分式、分式方程与实际的联系,体现数学建模思想。

五、教材

第十一章、三角形

本章主要学习了与三角形2024的线段(边、高、中线、角平分线)和角(内角、外角),探索并证明了三角形两边的和大于第三边以及三角形内角和定理,在此基础上研究了多边形的2024线段(边、对角线)和角(内角、外角),并证明了多边形内角和与外角和公式。教学重点是三角形与多边形的相关线段与角的计算证明。教学难点是三角形中相关证明。

第十二章 全等三角形

本章主要学习全等三角形的性质与判定方法,学习应用全等三角形的性质与判定解决实际问题的思维方式。教学重点:全等三角形性质与判定方法及其应用;掌握综合法证明的格式。教学难点:领会证明的思路、学会运用综合法证明的.格式。教学关键:突出全等三角形的判定。

第十三章 轴对称

本章主要学习轴对称及其基本性质,同时利用轴对称变换,探究等腰三角形和正三角形的性质。教学重点:轴对称的性质与应用,等腰三角形、正三角形的性质与判定。教学难点:轴对称性质的应用。教学关键:突出问题的思维方式。 第十四章、整式的乘除与因式分解

本章主要学习整式的乘除运算和乘法公式,学习对多项式进行因式分解。教学重点:整式的乘除运算以及因式分解。教学难点:对多项式进行因式分解及其思路。教学关键提示:引导学生运用类比的思想理解因式分解,并理解因式分解与整式乘法的互逆性。

第十五章、分式

本章主要学习了分式基本性质、通分、约分相关知识,并进一步学习了分式的运算及分式方程的相关内容。教学重点:分式的通分、约分;教学难点:分式的混合运算与解分式方程。

六、教学措施

1、作好课前准备。认真钻研教材教法,仔细揣摩教学内容与新课程教学目标,充分考虑教材内容与学生的实际情况,精心设计探究示例,为不同层次的学生设计练习和作业,作好教具准备工作,写好学案。

2、营造课堂气氛。利用现代化教学设施和准备好教具,创设良好的教学情境,营造温馨、和谐的课堂教学气氛,调动学生学习的积极性和求知欲望,为学生掌握课堂知识打下坚实的基础。

3、搞好阅卷。按照学校的要求对学生作业进行批阅,及时对作业进行总结,指出学生作业中存在的问题,并进行、讲解,帮助学生解决存在的知识性错误。

4、写好教学反思。课后及时对当堂课的教学情况、学生听课情况进行总结和反思,总结成功的经验,找出失败的原因,并作出和改进措施,对于严重的问题重新进行定位,制定并实施补救方案。

5、加强课后辅导。优等生要扩展其知识面,提高训练的难度;中等生要夯实基础,发展思维,提高问题和解决问题的能力,后进生要激发其学习欲望,针对其基础和学习能力采取针对性的补救措施。自习课走进教室,走进学生,和学生近距离交流和沟通,并及时对学生进行辅导和答疑,使学生能够把问题及时解决。 我相信在学校的指导下,在本组各位同事的帮助下,在我自己的努力下,我一定会在新学期中有所收获,有所提高,同时使我所教班级的学生成绩能够更进一步。

八年级数学的说课稿 第三篇

三、 教学过程设计

(一)提出问题:

首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是"已知一直角三角形的两边,如何求第三边?" 的问题。学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了。这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个"数学化"的过程。

(二)实验操作:

1、投影课本图1—1,图1—2的2024直角三角形问题,让学生计算正方形A,B,C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形A,B,C的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1—3,图1—4,同样让学生计算正方形的面积,但正方形C的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。

3、给出一个边长为0.5,1.2,1.3,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。

1、归纳 通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。

2、验证 为了让学生确信结论的正确性,引导学生在纸上任意作一个直角三角形,通过测量、计算来验证结论的正确性。这一过程有利于培养学生严谨、科学的学习态度。然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍"勾,股,弦"的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育。

(四)问题解决:

让学生解决开头的实际问题,前后呼应,学生从中能体会到成功的喜悦。完成课本"想一想"进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。

(五)课堂小结:

主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。

(六)布置作业:

课本P6习题1.1 1,2,3,4一方面巩固勾股定理,另一方面进一步体会定理与实际生活的联系。另外,补充一道开放题。

八年级数学说课稿 第四篇

1、初二数学上册角的平分线的性质_教学内容

本节课是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的。内容包括角平分线的作法、角平分线的性质及初步应用。作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础。因此,本节内容在数学知识体系中起到了承上启下的作用。同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律。

2、初二数学上册角的平分线的性质_学生

刚进入八年级的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导。根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础。

3、初二数学上册角的平分线的性质_教学环境

利用多媒体技术可以方便地创设、改变和探索某种数学情境,在这种情境下,通过思考和操作活动,研究数学现象的本质和发现数学规律。

4、初二数学上册角的平分线的性质_教学重点、难点

本节课的教学重点为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。教学难点是:1、对角平分线性质定理中点到角两边的距离的正确理解;2、对于性质定理的运用。

教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习。

八年级数学说课稿 第五篇

 一、教材

1、教材的地位和作用

正方形在小学学生已经接触过。在现实生活中随处可见,应用非常广泛,它是学生非常熟悉的一种图形。《正方形》是在学生掌握了平行线、三角形、平行四边形、菱形、矩形等2024知识及轴对称图形和中心对称图形等平面几何知识,并且具备有初步的观察、操作、推理和证明等活动经验的基础上出现的。目的在于让学生通过探索正方形的性质,进一步学习、掌握说理、证明的数学方法。这一节课是前面所学知识的延伸和概括,充分体现了平行四边形、菱形、矩形、正方形这些概念之间的联系、区别和从属关系,同时又是高中阶段继续学习正方体、正六面体必备的知识。

2、教学重点难点

教学重点:正方形的概念和性质。

教学难点:理解正方形与平行四边形、菱形、矩形之间的内在联系及正方形的性质和应用。

3、学生情况

我是一所山区中学的数学教师,我任教的班级学生基础一般,但学生学习积极性高,求知欲、表现欲强,具有一定的思考和探究的能力。但该班的学生在口头表达能力方面稍有欠缺,所以在本节课的教学过程中,我注重学生的说理能力、口头表达能力以及推理能力的培养。

4、教材的处理

在本节课前,学生已经学习了平行四边形,菱形,矩形,他们已经掌握了这些图形的意义、性质及其应用。因此,我对教材进行了如下处理:首先展示现实生活中的一组图片,让学生感知正方形,引入课题;通过观赏一室内装饰图案,运用多媒体课件呈现出图中的平行四边形、菱形、矩形、正方形,唤起学生的有意记忆和联想,在学生已有知识的基础上,自主探索新知识;通过运用多媒体演示图形的变化,让学生通过观察探索、归纳总结出正方形的意义、性质;最后应用正方形的意义和性质解决问题,使所学知识得以掌握。

 二、目标

(一)知识与技能

1、理解正方形的概念,掌握正方形性质以及正方形与平行四边形、菱形、矩形之间的关系。

2、能正确运用正方形的性质进行简单的计算、推理、论证。

(二)过程与方法

1、通过本节课的学习培养学生观察、动手、探究、、归纳、总结等能力。

2、培养学生的合情推理意识,主动探究的习惯,逐步掌握证明的方法。

3、渗透从一般到特殊,化未知为已知的数学思想及转化的数学思想方法。

(三)情感态度与价值观

1、让学生树立科学、严谨、理论联系实际的良好学风。

2、培养学生相互讨论、相互帮助、团结协作的团队精神。

 三、过程

课堂教学是学生数学知识的获得、技能技巧的形成、智力、能力的发展以及思想品德的'养成的主要途径。根据本节的教学内容,新课程标准的要求,学生的实际情况,我设计了以下五个主要的教学环节。

(一)、创设情境、引入课题

前苏联著名数学家辛钦指出:“我想尽力做到在引进新概念、新理论时,学生先有准备,能尽可能地看到这些新概念、新理论的引进是很自然的,甚至是不可避免的。我认为只有利用这种方法,在学生方面才能非形式化地理解并掌握所学到的东西。”这段话很精辟道出了引入新知识的一个重要原则──由自然到必然,就是说,在引进概念前,要让学生感到这是很自然的而且是不可避免的。

因此,本节课我创设以下情景,引入课题。

观察1:正方形的地板砖、、钟表、包装盒等

提问:你发现了什么?

(这些物品的表面都是正方形,利用正方形可以制作许多漂亮的图案。)

这节课我们一起来研究正方形。

板书课题————正方形。

观察2:一室内装饰图案,里面有平行四边形,菱形,矩形、正方形。

提问:前面我们学习了平行四边形、菱形、矩形,那么正方形与平行四边形、菱形、矩形之间有什么关系?

学生充分欣赏、观察第一组图片,真切地感受现实生活中存在的一种图形——正方形,让学生深刻体会到数学源于生活的真谛,揭示这节课的课题——正方形。通过观赏一室内装饰图案,运用多媒体课件呈现出图中的平行四边形、菱形、矩形、正方形,而平行四边形、菱形、矩形是学生已经学过的知识,非常熟悉,新课程标准指出教学过程的设计要从学生已有的认知结构出发,注重新旧知识的联系。这样使学生自然联想到:正方形与平行四边形、菱形、矩形之间有什么关系?激起学生思维的火花。

(二)、探究新知,形成概念

1、 复习回顾、开启思维

(1)想一想:矩形、菱形与平行四边形之间的边与角有什么关系?

(学生思考回答后课件展示图形的变化过程①②,使学生在图形的动画变化过程中了解由边、角的变化可使图形发生变化)

(2)量一量:正方形与菱形、正方形与矩形及平行四边形之间的边、角又有什么关系?

(3)说一说:正方形的概念。

(4)议一议:正方形与平行四边形、菱形、矩形之间有什么关系?

(学生合作交流,讨论探究正方形与平行四边形、菱形、矩形的边、角变化关系,然后课件展示图形的变化过程③④⑤,使学生在图形的动画变化过程中再一次了解由边、角的变化可使图形发生变化)

让学生回顾矩形、菱形与平行四边形的关系,既复习了已有的知识,又使学生产生联想:正方形与它们有什么关系,哪些东西发生了变化,从而激起学生强烈的求知欲望,迫切希望知道正方形与平行四边形、菱形、矩形之间哪些东西变化了,让学生动手量,分组讨论、探究正方形与平行四边形、菱形、矩形之间的由边、角变化而使图形之间发生了变化,揭示它们之间的内在规律,激励学生主动探索、大胆想象,体现了新课程理念:让学生经历数学知识的形成与应用的过程,使学生在认识事物时有了从“一般到特殊”的解决问题的思路,引导学生初步掌握“观察、、总结”的学习方法,从而有效地攻克了本节课的难点。

2、 共同探讨,类比归纳

(1)比一比:看谁填得又快又好:平行四边形、矩形、菱形的性质。(教师将事先准备好的表格在上课之前发给学生,让学生填完表格的前三列,教师检查,表扬填得好的同学),你知道正方形的性质吗?(学生讨论完成第四列)提问:你是怎样确定正方形的对称轴的?

(2)讲一讲:你是怎样得出正方形的性质的。

新课程的基本理念讲到:教学活动必须尊重学生已有的知识与经验。而平行四边形、菱形、矩形的性质,学生已经很熟悉。教学中我首先印好上面的表格,设计比一比,看谁填得又快又好,意在让全体学生参与到教学中来,回顾了所学知识,,同时开启学生联想的大门:正方形既是特殊的平行四边形,又是特殊的菱形和矩形,那么它就同时具有平行四边形、菱形和矩形的性质。然后学生类比归纳出正方形的性质,体现了“把所学知识建构在已学知识的基础上”的新课程理念,培养学生主动探索的习惯和创新意识。

(3)平行四边形有一个角是直角且邻边相等时变成了正方形,矩形的邻边相等时是正方形。想一想:你能否利用对角线的变化来判断一个四边形是正方形呢?试试看。

(教师在学生分组讨论、答辩后,再借助课件展示学生讨论的由对角线变化判定一个四边形为正方形的方法。)

利用对角线的变化,判断图形之间的变化,培养学生类比归纳的能力,学生在合作探讨中,培养学生的团结协作、共同探索的习惯,同时训练了学生的发现、归纳、总结的能力。

(三)、具体应用,形成技能

1、讲练结合、促进迁移

练习1、已知:如图1,正方形ABCD,对角线AC、BD交于点O ,AC=4

求:⑴、图中∠BAC= , ∠AOB .

⑵、与OA相等的线段有 ,AB= 。

⑶、正方形的周长是 ,面积是 。

图1

练习2、抢答:下列说法是否正确,错误的请说明理由。

①正方形一定是矩形。

②四条边都相等的四边形是正方形。

③有一个角是直角的平行四边形是正方形。

④两条对角线相等且互相垂直平分的四边形是正方形。

⑤两条对角线相等的菱形是正方形。

⑥菱形的对角线互相垂直且相等。

心理学研究表明:八年级学生集中注意力的时间约为25——35分钟,此时设计抢答题可以活跃课堂气氛,消除疲劳,充分调动学生学习的积极性。共同辨析正误,多问几个为什么,使平行四边形、菱形、矩形、正方形这几个概念越辩越清晰,同时培养了学生善于思考,勤于探索的好习惯。

例1、已知:如图1,正方形ABCD被它的两条对角线AC、BD分成四个小三角形,

求证:△AOB、△BOC、△COD、△DOA是全等的等腰直角三角形。

(引导学生用多种方法加以证明:如利用三角形全等;利用正方形的两条对角线是它的对称轴证明;画正方形沿对角线剪开证明等。)

例题1是证明题,意在培养学生的逻辑思维能力、推理能力、书写及语言表达能力,教师要引导学生用多种方法加以证明,鼓励学生从不同的角度解决同一问题,培养学生的发散思维能力。

2、动手操作、解释原理

例2、把一张长方形的纸片如图2那样折一下,可以截出正方形纸片,这是为什么呢?

如果是长方形木板,又怎样从中截出面积最大的正方形木板呢?

图2

例3、现学校有一正方形的花园,为方便游客观赏,要修两条直的小道通过花园(道路宽度忽略不计),把花园分成面积相等的四个部分,请你设计出尽可能多的修路方案,画出草图(不写画法、证明)

第2题引导学生利用所学知识联系生活实际解决问题,让数学贴近生活,达到生活材料数学化,数学教学生活化。把数学学习的内容与生活实际有机结合起来,使学生感受数学与生活的密切联系,增强学生学习数学的驱动力,激发学生学习数学的浓厚兴趣。

第3题让学生设计尽可能多的修路方案,既培养学生的创造性思维能力、发散思维能力,又揭示了正方形的本质,只要是通过正方形的中心且互相垂直的两条直线,就可将正方形分成面积相等的四部分。

3、深化目标、拓展延伸

例4、如图3,边长是1的正方形ABCD绕点A顺时针旋转30°得到正方ABCD,求图中阴影部分的面积。

利用多媒体的动画功能,使正方形ABCD绕点A顺时针旋转30°得到正方形ABCD,让学生仔细观察得出△ADE≌△ABE,再利用∠DAD=30°,正方形边长为1,求得△ABE的面积,从而得出阴影部分的面积,学生积极参与到探索活动之中,去寻找知识在应用中的衔接点,形成正确的应用观,培养学生选择适当的数学方法解决问题的能力。

(四)、归纳小结、深化新知

请同学们回答以下三个问题

1、本节课你学到了那些数学知识?你还有什么疑惑?

平行四边形

正方形

菱形

矩形

2、展示平行四边形、菱形、矩形、正方形四种图形的包含关系图,引导学生回顾正方形的定义和性质,并说出这几种图形之间的联系与区别。

3、 你对老师有何建议和看法,欢迎课后和老师交流。

(全班学生积极思考,相互讨论,然后自由发言。)

让学生小结,不仅回顾了所学知识,而且培养了学生归纳、概括的能力。通过小结,学生的发散思维能力和创新能力得到了加强,并向学生展示了人类认识世界的规律是由特殊到一般、由具体到抽象,使学生站在一个新的高度来认识所学内容。新课后的总结能起到画龙点睛的作用,同时有利于帮助学生理清知识的脉络,形成完整认知结构。

(五)、布置作业,提高能力

1、必做题

(1)已知正方形的一条边长为1cm,求它的对角线长。

(2)已知正方形的一条对角线长为4cm,求它的边长和面积。

2、选做题

(2)如图5,正方形ABCD的对角线BD上有一动点P,PE⊥AB,PF⊥AD,垂足分别为E、F,试指出△EOF的形状?说说你的理由。

原苏联心理学家维果茨基研究指出:“学生的发展有两种水平,第一种称为现有发展水平,表现为学生运用已有知识经验完成任务;第二种称为最近发展区,是一种准备水平,表现为学生还不能自行完成任务,需要教师的帮助,但是经过启发也许他就能完成任务。”教学就是要把最近发展区水平转化为现有水平。根据学生不同层次的知识水平,为了使学生巩固所学知识,我安排了难度不一的课外题。第一题为必作题,设计了2024正方形的周长、面积、对角线、边长的计算,目的是进一步理解正方形的性质,并考察学生掌握的情况。第二题是选作题,供学有余力的学生完成,体现分层教学,增加有能力的学生学习数学的兴趣和欲望。从而使不同的学生学到了不同的数学,每一个学生都得到了充分的发展。

 四、教学评价

前面,正方形的概念和性质是本节课的重点,而正方形的2024知识对后续的学习又显得尤为重要,因此本节课中教师的课前准备与课堂组织显得非常重要。在教学过程中,通过创设问题情境,积极引导、启发学生探索思考,使学生学会学习、学会探索、学会研究。同时,借助设计制作的多媒体课件辅助手段,极大地提高了课堂教学效益。因此,在本节课中,教师作为学习活动的组织者、引导者、参与者的身份得到了很好的体现。

学生是课堂的主人,本节课中,学生在教师创设的情境下,自主探索,合作交流,积极参与课堂教学,主动构建新的认知结构,他们学习的积极性得到充分发挥,因此学生的主体地位也得到很好地保证。

由于学生的个体差异表现为认知方式与思维策略的不同,以及认知水平和学习能力的差异,所以在整个教学过程中,都应尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,通过语言、目光、动作给予鼓励与赞许,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己的看法,肯定他们的点滴进步。对出现的错误耐心引导他们其产生的原因,鼓励他们改进;对学生思维的闪光点予以肯定鼓励;对学有余力并对数学有浓厚兴趣的同学,通过布置选做题去发展他们的数学才能。

 五、 教学反思

数学教学由于数学学科的特点,使得数学教学要突出数学的特点,在展示数学知识的过程中,要把数学思维的教学展示出来,使学生在学习数学的结论性知识的同时获得大量的过程性知识。同时,让学生经历对数学知识归纳总结的全过程。本节课的教学设计具有以下特点:①突出知识的纵横特点;②展示思维的“形”美“神”奇;③体现数学的学用结合;④重视学法的潜移默化。

以上就是我对本节课的教学设计,不足之处恳请各位专家赐教。最后祝大家生活愉快,事业有成。

猜你喜欢