范本网活动方案内容页

二次根式教案怎么写及范文

2024-11-16 15:27:02活动方案

我们大家眼前所欣赏的这篇文章2024共有7681文字,由全云平厘正发表。倘若你对此篇文章的写作能力需要改进或者修正,也可以上传分享给大家!

【二次根式教案 第一篇】

二次根式是初中数学中一个重要的概念,也是在数学学习过程中比较抽象的一部分。为了帮助学生更好地理解和掌握二次根式的相关知识,教师需要设计一份具有针对性的教学案例。

一、教学目标:

1.能够理解二次根式的概念,并能正确求解二次根式的运算。

2.能够应用所学知识解决实际问题。

3.培养学生观察问题、分析问题和解决问题的能力。

二、教学内容:

1.二次根式的定义和性质。

2.二次根式的简化和合并同类项。

3.二次根式的相加、相减和乘法运算。

4.二次根式在问题中的应用。

三、教学过程:

一、导入部分

教师可以通过提问的方式导入,例如:“小明在图书馆看到了一本书的封面上写着根号10,你知道根号10是什么意思吗?”引出根号、二次根式的概念。

二、概念讲解

1.教师通过示意图向学生展示二次根式的几何意义,让学生理解二次根式是一种特殊的数,表示了一个数的平方根。

2.讲解二次根式的性质:非负性、可约性和不可约性等。

3.引导学生观察、总结和归纳二次根式的简化和合并同类项的方法。

三、运算规则的讲解与练习

1.讲解二次根式的相加、相减和乘法运算的规则。

2.设计一些简单的计算题目,让学生通过练习掌握运算规则。

3.解析学生在练习中可能出现的错误,并引导学生发现错误的原因和改正方法。

四、应用训练

1.设计一些仿真问题,让学生将所学知识应用于实际问题的解决过程。

2.鼓励学生自主思考和解决问题,培养学生分析和解决问题的能力。

3.在解析问题的过程中,引导学生总结问题的关键点和解决方法。

五、归纳总结与拓展

1.对本节课的知识进行总结归纳,帮助学生理清知识体系。

2.设计一些拓展题目,让学生进一步巩固和应用所学的知识。

六、作业布置

根据学生的实际情况,布置相应的作业。可以包括一些练习题目、应用题和拓展题。

范文:

二次根式是初中数学中一个重要的概念,它在解决一些实际问题中能够发挥重要的作用。下面以一个实际问题为例,讲解二次根式的应用。

小明家里的房子需要铺设一块正方形的地砖,地面的面积是100平方米。已知一块地砖的边长是根号2米,问他家需要购买多少块地砖?

解:首先,我们知道正方形的面积等于边长的平方,所以这个正方形的边长是根号100米,即10米。

接下来,我们需要计算一块地砖所覆盖的面积。根据已知条件,地砖的边长是根号2米,所以地砖的面积是2平方米。

,我们将总面积除以地砖的面积,即可得到所需的地砖块数。100平方米 ÷ 2平方米 = 50块。

因此,小明家需要购买50块地砖。

通过这个简单的例子,我们可以看到二次根式在实际问题中的应用。学会运用二次根式来求解问题,不仅能够提高我们的数学思维能力,还可以帮助我们更好地理解和应用数学知识。

希望通过这样的教学案例,学生们能够更好地理解和掌握二次根式的相关知识,并能够应用所学知识解决实际问题,进一步提升数学能力和解决问题的能力。

【二次根式教案 第二篇】

一、教学目标

1.理解分母有理化与除法的关系.

2.掌握二次根式的分母有理化.

3.通过二次根式的分母有理化,培养学生的运算能力.

4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想

二、教学设计

小结、归纳、提高

三、重点、难点解决办法

1.教学重点:分母有理化.

2.教学难点:分母有理化的技巧.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

复习小结,归纳整理,应用提高,以学生活动为主

七、教学过程

【复习提问】

二次根式混合运算的步骤、运算顺序、互为有理化因式.

例1 说出下列算式的运算步骤和顺序:

(1) (先乘除,后加减).

(2) (有括号,先去括号;不宜先进行括号内的运算).

(3)辨别有理化因式:

有理化因式: 与 , 与 , 与 …

不是有理化因式: 与 , 与 …

化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).

例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?

引入新课题.

【引入新课】

化简式子 ,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以 的有理化因式,而这个式子就是 ,从而可将式子化简.

例2 把下列各式的分母有理化:

(1) ; (2) ; (3)

解:略.

注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.

【二次根式教案 第三篇】

教学目的:

1、在二次根式的混合运算中,使学生掌握应用有理化分母的方法化简和计算二次根式;

2、会求二次根式的代数的值;

3、进一步提高学生的综合运算能力。

教学重点:在二次根式的混合运算中,灵活选择有理化分母的方法化简二次根式

教学难点:正确进行二次根式的混合运算和求含有二次根式的代数式的值

教学过程:

一、二次根式的混合运算

例1 计算:

分析:(1)题是二次根式的加减运算,可先把前三个二次根式化最简二次根式,把第四式的分母有理化,再进行二次根式的加减运算。

(2)题是含乘方、加、减和除法的混合运算,应按运算的顺序进行计算,先算括号内的式子,最后进行除法运算。注意的计算。

练习1:P206 / 8--① P207 / 1①②

例2 计算

问:计算思路是什么?

答:先把第一人的括号内的式子通分,把第二个括号内的式子的分母有理化,再进行计算。

二、求代数式的值。 注意两点:

(1)如果已知条件为含二次根式的式子,先把它化简;

(2)如果代数式是含二次根式的式子,应先把代数式化简,再求值。

例3 已知,求的值。

分析:多项式可转化为用与表示的式子,因此可根据已知条件中的及的值。求得与的值。在计算中,先把及的式了有理化分母。可使计算简便。

例4 已知,求的值。

观察代数式的特点,请说出求这个代数式的值的思路。

答:所求的代数式中,相减的两个式子的分母都含有二次根式,为化去它们的分母中的根号,可以分别先把各自的分母有理化或进行]通分,把这个代数式化简后,再求值。

三、小结

1、对于二次根式的混合混合运算。应根据二次根式的加、减、乘除和乘方运算的顺序进行,即先进行乘方运算,再进行乘、除运算,最后进行加、减运算。如果有括号,先进行括号内的式子的运算,运算结果要化为最简二次根式。

2、在代数式求值问题中,如果已知条件所求式子中有含二次根式(或分式)的式子,应先把它们化简,再求值。

3、在进行二次根式的混合运算时,要根据题目特点,灵活选择解题方法,目的在于使计算更简捷。

四、作业

P206 / 7 P206 / 8---②③

【二次根式教案 第四篇】

第十六章 二次根式

代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,”;②单个的数字或单个的字母也是代数式

5.5(解析:这类题保证被开方数是最小的完全平方数即可得出结论.20=22×5,所以正整数的最小值为5.)

6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:关键是逆用()2=a(a≥0)将3变成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

7.解:(1) . (2)宽:3 ;长:5 .

8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

9.解:原式=-=-.∵x=6,∴x+1>0,x-8

10.解析:在利用=|a|=化简二次根式时,当根号内的因式移到根号外面时,一定要注意原来根号里面的符号,这也是化简时最容易出错的地方.

解:乙的解答是错误的.因为当a=时,=5,a-

本节课通过“观察——归纳——运用”的模式,让学生对知识的形成与掌握变得简单起来,将一个一个知识点落实到位,适当增加了拓展性的练习,层层递进,使不同的学生得到了不同的发展和提高.

在探究二次根式的性质时,通过“提问——追问——讨论”的形式展开,保证了活动有一定的针对性,但是学生发挥主体作用不够.

在探究完成二次根式的性质1后,总结学习方法,再放手让学生自主探究二次根式的性质2.既可以提高学习效率,又可以培养学生自学能力.

练习(教材第4页)

1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

习题16.1(教材第5页)

1.解:(1)欲使有意义,则必有a+2≥0,∴a≥-2,∴当a≥-2时,有意义. (2)欲使有意义,则必有3-a≥0,∴a≤3,∴当a≤3时,有意义. (3)欲使有意义,则必有5a≥0,∴a≥0,∴当a≥0时,有意义. (4)欲使有意义,则必有2a+1≥0,∴a≥-,∴当a≥-时,有意义.

2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

3.解:(1)设圆的半径为R,由圆的面积公式得S=πR2,所以R2=,所以R=± .因为圆的半径不能是负数,所以R=-不符合题意,舍去,故R= ,即面积为S的圆的半径为 . (2)设较短的边长为2x,则它的邻边长为3x.由长方形的面积公式得2x3x=S,所以x=±,因为x=-不符合题意,舍去,所以x=,所以2x=2=,3x=3=,即这个长方形的相邻两边的长分别为和.

4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

5.解:由题意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合题意,舍去,∴r=,即r的值是.

6.解:设AB=x,则AB边上的高为4x,由题意,得x4x=12,则x2=6,∴x=±.∵x=-不符合题意,舍去,∴x=.故AB的长为.

7.解:(1)∵x2+1>0恒成立,∴无论x取任何实数,都有意义. (2)∵(x-1)2≥0恒成立,∴无论x取任何实数,都有意义. (3)∵即x>0,∴当x>0时, 在实数范围内有意义. (4)∵即x>-1,∴当x>-1时,在实数范围内有意义.

8.解:设h=t2, 则由题意,得20=×22,解得=5,∴h=5t2,∴t= (负值已舍去).当h=10时,t= =,当h=25时,t= =.故当h=10和h=25时,小球落地所用的时间分别为 s和 s.

9.解:(1)由题意知18-n≥0且为整数,则n≤18,n为自然数且为整数,∴符合条件的n的所有可能的值为2,9,14,17,18. (2)∵24n≥0且是整数,n为正整数,∴符合条件的n的`最小值是6.

10.解:V=πr2×10,r= (负值已舍去),当V=5π时, r= =,当V=10π时,r= =1,当V=20π时,r= =.

如图所示,根据实数a,b在数轴上的位置,化简:+.

〔解析〕 根据数轴可得出a+b与a-b的正负情况,从而可将二次根式化简.

解:由数轴可得:a+b0,

∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

[解题策略] 结合数轴得出字母的取值范围,再化简二次根式,此题体现了数形结合的思想.

已知a,b,c为三角形的三条边,则+= .

〔解析〕 根据三角形三边的关系,先判断a+b-c与b-a-c的符号,再去根号、绝对值符号并化简.因为a,b,c为三角形的三条边,所以a+b-c>0,b-a-c

[解题策略] 此类化简问题要特别注意符号问题.

化简:.

〔解析〕 题中并没有明确字母x的取值范围,需要分x≥3和x

解:当x≥3时,=|x-3|=x-3;

当x

[解题策略] 化简时,先将它化成|a|,再根据绝对值的意义分情况进行讨论.

5

O

M

【二次根式教案 第五篇】

教学目的

1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;

2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。

教学重点

最简二次根式的定义。

教学难点

一个二次根式化成最简二次根式的方法。

教学过程

一、复习引入

1.把下列各根式化简,并说出化简的根据:

2.引导学生观察考虑:

化简前后的根式,被开方数有什么不同?

化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

3.启发学生回答:

二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?

二、讲解新课

1.总结学生回答的内容后,给出最简二次根式定义:

满足下列两个条件的二次根式叫做最简二次根式:

(1)被开方数的因数是整数,因式是整式;

(2)被开方数中不含能开得尽的因数或因式。

最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。

2.练习:

下列各根式是否为最简二次根式,不是最简二次根式的说明原因:

3.例题:

例1 把下列各式化成最简二次根式:

例2 把下列各式化成最简二次根式:

4.总结

把二次根式化成最简二次根式的根据是什么?应用了什么方法?

当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。

当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。

此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,分子、分母再分别化简。

三、巩固练习

1.把下列各式化成最简二次根式:

2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。

猜你喜欢