范本网心得体会内容页

以研究性学习推进小学数学教育的创新_数学论文

2024-11-18 06:01:01心得体会

我们所欣赏的此篇共有44681文字,由陶龙伯细心纠正,发表于。《发现》是一档以讲述东北史实、揭秘东北往事,电视剧拍摄手法与专题片制作手法有机融合的节目。以研究性学习推进小学数学教育的创新_数学论文欢迎来浏览,希望能分享给用的到的朋友!

第一篇 以研究性学习推进小学数学教育的创新_数学论文

?我国已经进入了全面建设小康社会、加快推进现代化的新的发展阶段,正在向现代化建设第三步战略目标迈进。要完成这一历史任务,必须不断推进教育创新。然而,传统的“传授-------接受”的旧观念至今影响着一部分教师,旧的教学观念还是影响着现代的教学;以学生考分高低评价教师的优劣,也使得有些教师急功近利;更主要的是“以学生发展为本”的教育理念还没被广大教师真正内化并变成自觉的教学行为。纵观小学数学课堂:学生的学习方式是单一的、被动的,往往缺少自主的研究、探索;学生学习的合作、获取知识的机会很少;教师缺少对学生学习的情感、态度以及个体差异的关注,忽视学生创新精神和实践能力的培养;学生在学习活动中应该表现出来的高度的主动性、自主性和创造性受到压抑。事实上,学生的数学学习不应只是简单的概念、公式、法则的掌握和熟练的过程,而应该更具有发现性、探索性和思考性。教师要鼓励学生用自己的方法去发现问题、探索问题和思考问题。因为学生用自己的方法去发现、探索、思考的问题才会成为学生的真正的问题,期间他们所得到的知识才能真正为学生所掌握。我想推进小学数学教育的创新,首先应大力提倡研究性学习, 具体可以从以下几个方面阐明:??? ?一、研究性学习的理论基础:1、研究性学习符合小学生的心理特点。小学生往往对周围的事物充满好奇,特别好问,他们具有创造和研究的潜能。wwW.meiword.Com研究性学习本身可以满足学生的这种心理需要,能激发学生学习的兴趣、动机以及求知欲。2、研究性学习过程是积极的有意义的学习过程。因为真正有意义的学习,不是被动接受现成的书本知识,而是学生以积极的心态,在自己已有知识经验的基础上对新问题进行积极探索、主动建构的过程。3、研究性学习符合学生的认知特点,尊重学生学习的认知规律。因为学生对客观现实的认识来自于对外界尝试、研究、索性的活动,而学生用自己的学习方式研究新知,对他们来说是最好的方法;教师再进行“因势利导”,这样更符合学生的认知特点和规律。3、研究性学习有利于培养学生的创新意识和实践能力。研究性学习提倡学生自由研究、自由创造,为学生提供更多的活动机会以及表现与发展的机会,鼓励学生自由奔放和新异的想象,使学生的创造潜能得到发挥。4、研究性学习能促进学生主体性的发展。因为学生只有在努力研究新知、解决问题的过程中,其学习的自主性、主动性、创造性才能得到充分发挥,主体性才能得到充分发展,个性得到完全的解放。6、研究性的学习能够培养学生处理信息的能力:(1)发现问题,提出问题,解决问题的能力,学生可以自由的设想,尝试,解答,检验,得出结论,交流思想。(2)发展学生研究与合作的精神,学会通过同伴之间的积极的相互影响来提高学习的效率,培养学生合作意识和人际交往能力。(3)让学生通过亲身参与研究、实践活动,去获得积极的情感体验,逐步形成一种在日常学习与生活中乐于寻疑、质疑、解疑的心理倾向。(4)充分发挥学生数学学习的自主性、主动性和创造性,促进学生主体性的发展。

?二、实施研究性学习笔者认为要做到以下三点:( 1 )要创设一个问题的情境。“发明千千万,起点在一问”,发现问题往往比解决问题更重要。问题是最好的老师,学生研究学习的积极性、主动性,往往来自于充满疑问和问题的情境。创设问题情境,就是在教材内容和学生求知心理之间制造一种“不协调”,把学生引入一种与问题2024的情境的过程。通过问题情境的创设,使学生明确研究目标,给思维定向;同时产生强烈的研究欲望,给思维以动力。设计问题情境,力求体现“五性”:1、障碍性:引起冲突,产生不平衡,提出智力挑战。2、趣味性:富有趣味,引发学生积极思维。3、开放性:解题思路灵活多样,答案不一定唯一。4、差异性:适合各层次学生,由浅入深作出回答。5、实践性:以个人或小组的探究实践活动,寻求方法。同时,教师应注意对于问题情境中所隐含的“问题”,不要作简单的答复,应该让学生在学习实践活动中自己去发现、提问。学生自己发现问题更贴近其思维实际,更能引起学生主动的研究。 ( 2 )既要注重学生的研究,又要注重学生的合作学习。研究:每个学生根据自己的体验,用自己的思维方式自由地、开放地去研究,去发现,去再找出2024的数学知识,期间的过程往往是的。因为学生学习知识的过程,是主动建构知识的过程,而不是被动接受外界的;学生是以原有的知识经验为基础,对新的知识信息进行加工、理解,由此建构起新知识的网络层面。教师无法代替学生自己的思考,更代替不了几十个有差异的学生的思维。通过学生动手“研究数学”,使他们亲身体验获得知识的快乐。研究的目的,不仅在于获得数学知识,更在于让学生在研究的过程中学习科学研究的方法,从而增强学生的自主意识,培养学生的研究精神和创造能力。教学中教师要鼓励学生研究,努力做到:1、要给学生自由探究的时间和空间,不要将教学过程变成机械重复教案的过程;2、要鼓励学生大胆猜想。质疑问难。发表不同意见,不要急于得到圆满的答案;3、要给学生以思考性的指导,特别是当学生的见解出现错误或偏离时,要引导学生自己发现问题。自我矫正,将机会留给学生,不要代替学生自己的思考。总之,凡是学生能发现的知识,教师决不代替;凡是学生能解决的问题,教师决不暗示.合作交流:所谓合作交流,是指在学生个体研究的基础上,让学生在小组内或班级集体范围内,充分展示自己的思维方法及过程,相互讨论,揭示知识规律和解决问题的方法、途径。在合作交流中学会相互帮助,实现学习互补,增强合作意识,提高交往能力。为了提高合作交流的有效性,教师要重视合作技能的培养:1、听的技能:要培养学生专心倾听别人发言的习惯,要能听出别人发言的重点,对别人的发言作出判断,有自己的见解。2、说的技能:要培养学生敢说的勇气,说话时要声音响亮、条理清楚、语句完整,语言简练且能突出重点。3、交往的技能:尊重别人,不随意打断别人的发言,善于采纳别人的意见,给别人有插话的机会,修改、补充自己原先的想法,体会他人的情感,控制自己的情绪。4、策略的技能:学会根据任务性质来决定应该采用的策略,促使合作更加有效。例如:先思考再合作讨论,达到开阔每个人思路的目的,或先明确分工再合作,使每个成员都可以发挥自己的所长,既学得快又学得好;等等。同时,教师要注意合作内容的选择,如:发现知识性规律的合作;辨析概念性问题的合作;优化解决问题策略的合作。三、研究性学习的环节:问题情境----探究----合作交流----实践运用----评价体验,五个环节可构成研究性学习的一个活动系统,每个环节中学生的活动是开放性的,而环节与环节是紧密相连的,为学生系统地提供自己研究、探索、充分展现、愉快合作、自我体验的时间和空间,也有利于教师指导作用的发挥。

四、研究性学习在实际运用中应注意的问题:小学数学大纲提出“探索和解决简单的实际问题”,重点强调学生解决问题是一个探索的过程,而不是一个简单地用现成的模式解决问题的过程。让学生在研究、探索中了解实际问题中的各种关系,进而将实际问题用数学关系表示出来,这对学生数学的应用意识的培养和数学思维水平的提高具有重要意义。教师设计练习,不仅要有利于帮助学生巩固、掌握知识,更要有利于学生数学的应用意识及实践能力的培养。那种题目条件确定、结构良好、答案唯一的,只需重复所学知识即可解决问题的“标准式”的练习,往往造成学生思维定势,妨碍学生思维发展,对培养学生创新精神和实践能力显然不利。为此,教师在设计练习时还必须重视设计结构不全、条件不明、必须发挥创造性、结合2024经验才能解决的问题,特别要重视开放性练习的设计。设计开放性练习,可以从以下角度着手: (1)解题策略的开放。让学生多角度地进行思考,用不同的方法解决问题,在此基础上进行解题策略的比较,逐步树立策略优化的思想。 (2)题目条件的开放。让学生能从实际出发,对所要解决问题的条件作全面、周密思考,根据不同条件对问题作出不同的解释,提高全面及解决实际问题的能力。(3)所求问题的开放。让学生由已知条件出发,去思考所能解决的各种问题,进行发散思维训练,培养思维的创造性。(4)题目答案的开放。让学生面对条件、问题相同的题目,进行不同角度的思考、,获得不同的答案,对学生进行求异思维的训练,学会辩证地看问题,培养学生的创新精神。评价体验,其主要目的在于促进学生主体性的发展。学生主体发展的主要因素有:主动发展的动力和和主动发展的能力。评价体验的主要任务在于增强学生主动发展的动力,提高主动发展的能力。为此,教师在课堂教学中要重视:一是对学生进行研究、合作发现、实践运用等学习活动中表现出的自主性、主动性、独创性等主体精神和品质进行评价,使学生获得主动研究获取知识的情感体验,增强学生学习的信心和动力。 二是要引导学生对研究学习的活动过程进行反思,重点是提炼解决问题、获取新知的数学思想方法和有效策略,使学生对数学思想方法和学习策略有所体悟,并自觉地将思维指向数学思想方法和学习策略上,以提高主动获取新知、解决问题的能力。 五、小学段研究型教学的目标定位:1、总体上实现对学生进行“主人、主体、主角”的三主人格培养。2、激发小学生对科学技术问题的好奇心和探索欲望,使学生初步具有爱科学、学科学、用科学的热情和追求。3、初步培养探究和合作学习的精神,了解从事学习必须具备的精神、气质和品格,知道什么是合作精神,什么是实事求是的态度和价值观。4、让学生获得亲身参与知识和积极情感体验,初步形成一种在日常学习与生活中喜爱质疑、乐于探究、努力求知的心理倾向。5、初步学会用一些最基本的工具和仪器,初步应用所知识解决一些最基本的生活问题和解释一些自然现象。6、初步了解科学思维方法,培养科学思维的能力,初步养成动脑筋、提问题、想问题、找资料、找答案的习惯,初步培养创新精神和创新意识。????????????????????????????????????????????????? 参考备注:----------在庆祝北师大建校100年上的讲话

???????????????????? ???????----------- 特级教师教学讲座摘要------------参考《小学生心理特点》

第二篇 师生互动在中学数学教育系统的地位和作用_数学论文

摘? 要:随着数学改革的不断深入,如何科学地、有效地进行课堂教学,发挥师生互动的作用是促进教学工作、实施素质教育势在必行的一项工程。本文主要探索师生互动在数学教学中的作用,研究数学课堂交流对学生学习积极性、思维能力及学习效果的影响,建立一种师生平等、相互交流的和谐课堂气氛,使课堂成为师生的共同舞台。本论文在研究中以行动研究为主,同时采取边行动,边研究和边总结改进的做法,用经验总结法归纳和探索适合于学生的课堂教学模式,对“课改”理念下的课堂教学提出平等、合作与交流、相互理解、转变角色等看法,寻求师生间的教与学的相互促进。

关键词:课改? 中学数学?? 师生互动?? 地位? 作用? 平等? 合作与交流

“师生互动”这一课堂教学理念并不是新生事物,而是自古就有的。无论是中国古代孔子与的座谈还是古罗马教育家昆体良提出的“教是为了不教”都或多或少的在形式和内容上成为“师生互动”的先导。 要使“师生互动”这一理念真正内化到课堂教学方式中,我们必须明白不仅要教给学生知识还要教给学生获得知识的方法。教师在课堂上的角色就不能是单纯的给与者,而应该是获取方法的引导者。

数学具有高度的抽象性和严密的逻辑性,这就决定了学习数学有一定的难度。所以,在课堂教学中开发学生大脑智力因数、引导学生数学思维更要求师生间有充分的交流与合作,因而,师生互动也表现得更加突出。据我所知,多数数学老师在实践中的互动形式主要有:1. 多提问,一堂课不间断的提问,力求照顾到全体学生;2. .多讨论,老师讲完一个问题后,让学生分组讨论,然后再指派或让学生推举代表发言。Www.meiword.Com这两种形式确实具有易掌控、易操作、有利于按时完成教学任务等优点。但我认为这并不是真正意义上的“互动”。真正的“互动”应具备下列几个要件:

一、师生互动, 首先要强调师生的平等。

师生平等,老师不是居高临下的“说教者”,而是作为引导者,引导学生自主完成学习任务。我们知道,教育作为人类重要的社会活动,其本质是人与人的交往。教学过程中的师生互动,既体现了一般的人际之间的关系,又在教育的情景中“生产”着教育,推动教育的发展。根据交往理论,交往是主体间的对话,主体间对话是在自主的基础上进行的,而自主的前提是平等的参与。因为只有平等参与,交往双方才可能向对方敞开精神,彼此接纳,无拘无束地交流互动。因此,实现真正意义上的师生互动,首先应是师生完全平等地参与到教学活动中来。

应该说,通过各种学习,尤其是课改理论的学习,我们的许多教师都逐步地树立起了这种平等的意识。但是在实际问题当中,师生之间不平等的情况仍然存在。教师闻道在先,术业专攻,是先知先觉,很容易在学生面前就有一种优越感。年龄比学生大,见识比学生多,认识比学生深刻,有时就很难倾听学生那些还不那么成熟、幼稚,甚至错误的意见。尤其是遇到一些不那么驯服听话的孩子,师道的尊严就很难不表现出来。因此,师生平等地参与到教学活动中来,其实是比较难于做到的。

怎样才有师生间真正的平等,这当然需要教师们继续学习,深切领悟,努力实践。但师生间的平等并不是说到就可以做到的。如果我们的教师仍然是传统的角色,采用传统的方式教学,学生们仍然是知识的容器,那么,把师生平等的要求提千百遍,恐怕也是实现不了的。很难设想,一个高高在上的、充满师道尊严意识的教师,会同学生一道,平等地参与到教学活动中来。要知道,历史上师道尊严并不是凭空产生的,它其实是维持传统教学的客观需要。这里必须指出的是,平等的地位,只能产生于平等的角色。只有当教师的角色转变了,才有可能在教学过程中,真正做到师生平等地参与。转变教育观念,改变学习方式,师生平等地参与到教学活动中来,实现新课程的培养目标,是这次课程改革实施过程中要完成的主要任务,这也正是纲要中提出师生积极互动的深切含义。为什么我们要强调纲要提出的师生互动绝不仅仅是一种教学方式或方法,其理由就在于此。

二、 师生互动,还应该彻底改变师生的课堂角色,变“教”为“导”,变“接受”为“自学”。

课堂教学应该是师生间共同协作的过程, 是学生自主学习的主阵地,也是师生互动的直接体现,要求教师从已经习惯了的传统角色中走出来,从传统教学中的知识传授者,转变成为学生学习活动的参与者、组织者、引导者。现代建构主义的学习理论认为,知识并不能简单地由教师或其他人传授给学生,而只能由每个学生依据自身已有的知识和经验主动地加以建构;同时,让学生有,找出本节的重点,新知点和难点,先自己利用已学知识尝试解决,攻克疑难问题。这是学生“自学”的过程,在老师做了演示之后,再让学生阅读,自行解决课本中的例题和练习。有了“导学”的认识,学生对本节课的知识点就相当明确,“自学”的过程实际上是在运用旧知识进行求证的过程,也是学生数学思维得以进一步锻炼的过程。所以,改变课堂教学的“传递式”课型,还课堂为学生的自主学习阵地是师生双边活动得以体现,师生互动能否充分实现的关键。

总之,教师成为学生学习活动的参与者,平等地参与学生的学习活动,必然导致新的、平等的师生关系的确立。我们教师要有充分的、清醒的认识,从而自觉地、主动地、积极地去实现这种转变。与此同时,我们也应看到,这次课改,从课程的设置,教材的编写,教学要求等许多方面,都为我们教师这种角色转变,提供了很多有利的条件(其实不转变角色已不能适应新课程实施的要求了)。我们应充分利用这些有利条件,在课改实验中,尽快完成这种转变,以适应新课程实施的要求。

三、 创设问题情景,在教学过程中体现师生的合作与交流是“师生互动”的直接表现

在教学过程中,师生之间的交流应是“随机”发生,而不一定要人为地设计出某个时间段老师讲,某个时间段学生讨论,也不一定是老师问学生答。即在课堂教学中,尽量创设宽松平等的教学环境,在教学语言上尽量用“激励式”、“诱导式”语言点燃学生的思维火花,尽量创设问题,引导学生回答,提高学生学习能力及培养学生创设思维能力。例如,在教学“完全平方公式”时,可以这样来进行:

?? 1.提出问题:(a+b)2=a2+b2成立吗?

?? (显然学生的回答有:成立、不成立、不一定成立等等)

?? 2.引导学生计算:

①(a+b)(a+b)=

②(m+n)(m+n)=

③(x+y)(x+y)=

④(c-d)(c-d)=

?? 3.引导学生发现①算式的左边就是完全平方式(a+b)2

???????? ②算式的结果形式是a2±2ab+b2

?? 4.进一步提出:能直接写出结果吗(a+1)2=???

这样学生也就一下子明白了这个规律可以作为公式…??????

通过教师的诱导,学生的参与,使学生既认识了完全平方公式的形成,对该公式的掌握也一定有很大的帮助,这种探索精神也势必激励学生去习,从而提高学习能力。再如讲授一元一次不等式的解法:

例1? 解不等式? 4(1+x)

?? 解:去括号,得

?? 4+4x

?? 移项,得

?? 4x-x

?? 合并同类项,得

?? 3x

?? 不等式两边都除3,得x

“无问题”教学可以是照本宣科,学生很快便会“依葫芦画瓢”,不知“所以然”,当然就难以有应变思维了。“创设问题”教学,教师设计以下问题让学生思考:

①不等式的结果(解集)的形式是怎样的?

②结果(解集)的形式与原题的形式有哪些差异?

③如何消除这些差异?

?? 学生有了问题,自然注意力集中,思维活跃……

?? 在学习新内容时,如果都能诱导,让学生开动脑筋,那么学生不但对知识理解深入,而且有利于他们创造思维的培养。如上例,学生弄清了去括号,移项等……是朝着解集的形式转化的目的后,对于解不等式 ,也就能很清楚知道“第一步是去分母”了。这也就是我们所希望的创造思维能力所起的作用。

古人常说,功夫在诗外。教学也是如此,为了提高学术功底,我们必须在课外大量地读书,认真地思考;为了改善教学技巧,我们必须在备课的时候仔细推敲、精益求精;为了在课堂上达到“师生互动”的效果,我们在课外就应该花更多的时间和学生交流,放下架子和学生真正成为朋友。学术功底是根基,必须扎实牢靠,并不断更新;教学技巧是手段,必须生动活泼,直观形象;师生互动是平台,必须师生双方融洽和谐,平等对话。 如果我们把学术功底、教学技巧和师生互动三者结合起来,在实践中不断完善,逐步达到炉火纯青的地步,那么我们的教学就是完美的,我们的教育就是成功的。

四、师生互动,还应该建立在师生间相互理解的基础上。

教学过程中,师生互动,看到的是一种双边(或多边)交往活动,教师提问,学生回答,教师指点,学生思考;学生提问,教师回答;共同探讨问题,互相交流,互相倾听、感悟、期待。这些活动的实质,是师生间相互的沟通,实现这种沟通,理解是基础。

有人把理解称为交往沟通的“生态条件”,这是不无道理的,因为人与人之间的沟通,都是在相互理解的基础上实现的。研究表明,学习活动中,智力因素和情感因素是同时发生、交互作用的。它们共同组成学生学习心理的两个不同方面,从不同角度对学习活动施以重大影响。如果没有情感因素的参与,学习活动既不能发生也难以持久。情感因素在学习活动中的作用,在许多情况下超过智力因素的作用。因此,新课程实施中,情感因素和过程被提到一个新的高度来认识。发展学生丰富的情感,是这次课程改革的目标之一。可以这么说,增进相互理解的过程,其实也是丰富、发展交往双方情感因素的过程。

教学实践显示,教学活动中最活跃的因素是师生间的关糸。师生之间、同学之间的友好关系是建立在互相切磋、相互帮助的基础之上的。在数学教学中,数学教师应有意识地提出一些学生感兴趣的、并有一定深度的课题,组织学生开展讨论,在师生互相切磋、共同研究中来增进师生、同学之间的情谊,培养积极的情感。我们看到,许多优秀的教师,他们的成功,很大程度上,是与学生建立起了一种非常融洽的关系,相互理解,彼此信任,情感相通,配合默契。教学活动中,通过师生、生生、个体与群体的互动,合作学习,真诚沟通。老师的一言一行,甚至一个眼神,一丝微笑,学生都心领神会。而学生的一举一动,甚至面部表情的些许变化,老师也能心明如镜,知之甚深,真可谓心有灵犀一点通。这里的灵犀就是我们的老师在长期的教学活动中,与学生建立起来的相互理解。

五、创设有利于师生互动的教学方式及组织形式。

教学过程中要实现师生积极互动,要求师生间有尽可能充分的交往活动。目前,中学教学班的班额还普遍偏大(一般50多60人,有的甚至达70多人),要实现充分交往活动是有很大难度的。因此,必须积极探索在现实条件下,有利于师生在教学过程中实现积极互动的教学方式及组织形式。

在教学过程中,由于教师采用的教学方法不同,一般存在以下三种主要课型:

1、以讲授法为主的课型;

2、以讨论法为主的课型;

3、以探究——研讨为主的课型。

第2、3两种课型所形成的交流方式比较好,在新课程实施过程中,有许多课都采用了这两种课型。这两种课型极有利于形成师生、生生、个体与群体的互动。

与这两种课型适应的教学组织形式有多种,但以小组为单位开展学习研究活动有更多的优越性。根据实践经验,这种小组以4——6人为宜,全班不超过10个小组。小组内成员轮流担任组长,负责召集工作及充当小组发言人。这种组织形式首先使小组内生、生交流互动比较充分。其次,因为人人都要当组长,所以对组内同学的意见、其他组同学的发言也都能注意地倾听。由于代表组内同学发言,主人公的意识也更强一些。每个组与老师的交流、对话也比较充分,较好地弥补了大班额条件下,师生、生生交往的不便,为互动创设较好的条件,是目前条件下有利于师生积极互动的一种比较好的教学组织形式。

文献参考:

吴兴长,《数学教学中非智力因素的培养》

教育行政学院,《教育心理学讲座》

邓友详,《中学数学教学参考》

《全日制义务教育数学新课程标准(试验稿)》师范大学出版社

胡久忠,《数学教育学》

第三篇 数学开放题的教育价值与设计艺术_数学论文

摘 要:数学开放题有利于学生根据自己的认知结构对问题作出解释,实现对知识的主动建构,获得认知结构的改造和重组。由于数学开放题强调了学生获得解答的过程,体现了学生在教学活动中的真正主体地位,从而极大地提高了学生的学习积极性,是克服“灌输式”教学倾向的解药。因此,对广大数学教师的教学经验进行总结,主动接受建构主义教学理论的指导,构建中国式的数学开放题及其教学模式是对学生进行素质教育的一种有效途径。

?? 关键词:数学;数学开放题;开放题的研究;教育价值与设计艺术。

传统的教师中心“遗传”基因,直到今天依然存在,而且严重地影响着数学教师的教

学观念,影响着数学教育的发展。

近年来,数学开放题作为一个具有时代特色的数学教育改革的亮点,已日益引起我国数学教育界的注意,逐渐形成为数学教学改革的一个热点。1998年的全国高等学校招生统一考试数学试题里“开放题”居然也堂皇入室。

一、何谓开放题?

(1)开放题是指那些答案不唯一,并在设问方式上要求学生进行多方面、多角度、多层次探索的问题。 (2)开放题并不是普通的数学问题,而是为了达到一定的教育目的而精心编制设计的数学问题。

一道数学题的开放性(开放度)在很大程度上取决于这道题采用何种设问方式。即使是一道传统的封闭性数学题,也可以通过改变其设问方式而将其改编为具有开放性的习题。WWw.meiword.COm要求学生进行多方面、多角度、多层次探索是一种“开放性的解题要求”,通常使用“试尽可能多地……”一类的词语来提出,它对学生具有“鼓励参与,激励优化,追 求卓越”的作用。

?二、为何研究开放题

目前人们普遍认为素质教育的核心是培养创新精神和创造能力,而开放题教学是推进数学素质教育的一个切入点和突破口。开放题给学生进行创造性学习提供了宽松、自由的环境,它的作用体现在以下几个方面:

1、开放题的教育作用:

?? ①? 发散性??? 学生必须打破原有的思维模式,展开联想和想象的翅膀,从多角度、多方位、多层次进行探讨,其思维方向和模式的发散性有利于创造性能力的形成。

?? ②? 探索性??? 因为开放题易使学生形成原有认知结构和新认知结构的冲突,学生必须通过顺应来主动建构新的认知结构,因而有利于培养他们的探索意识和创新精神。

?? ③? 趣味性??? 开放题独特的叙述方式、宽松的解题环境和极富挑战性的解题策略,为学生在迫切要求下进行数学学习创造了条件,有利于激发学生的好奇心和好胜心,增强了学习的内驱力,对数学探索产生浓厚兴趣。

④? 多样性??? 在开放题教学中,既要有学生思考的个体活动,还需有师生之间、学生之间的合作、讨论、交流的群体活动。开放题答案的多样性,使得其最终的解决只靠个人的力量在有限的时间内难以完成,需要依靠集体的智慧和群体的力量。

⑤? 主体性??? 开放题教学是以学生为中心,有利于保障学生的主体地位,使学生真正成为学习的主人。

⑥? 竞争性??? 开放题解答的多样性和差异性,使其有了优与劣、多与少、简与繁的区别。也正是这种差异的存在,激发了学生的好胜心,使竞争意识悄然地渗入学生的头脑,把竞争机制引入开放题的课堂教学。

⑦? 创造性???? 在开放题的解答过程中,没有固定的、现成的模式可循,靠死记硬背、机械模仿找不到问题的解答,学生必须充分调动自己的知识储备,积极开展智力活动,用多种思维方法(如联想、猜测、直觉、类比,等等)进行思考和探索,因而开放题是提高学生创造能力的有效工具,是培养创造人才的摇篮。

2、开放题的转化作用:

(1)开放题对教师观念的转变:? 开放题的出现以及对其教育功能的肯定,一方面反映了人们数学教育观念的转变;另一方面适应了飞速发展的时代的需要。实际上反映了人们对于数学教学新模式的追求,是人们站在历史的高度上对数学教育改革的新探索。

?①? 观念转变的原因:

a.当技术的发展已使社会数学化,数学的应用已渗透到开放社会的各个方面的时候,我们不应满足于陈旧的、封闭的教学方法。

b.数学不能仅仅理解为一门演绎科学,数学还有其更重要的一面,即它是一门非逻辑的、生动的、有丰富创造力的科学。

c.数学教学是学生创新活动的过程,仅仅靠教师的传授,不能使学生获得真正的数学知识。

d.在数学教学活动中,学生是教学认知的主体,没有学生的积极参与就没有名副其实的教学活动,教师的作用主要体现在他是教学活动的组织者、指导者和鼓励者。

?②? 观念转变的内容:

?? a.我国基础教育司明确指出:“课程是一个历史范畴,课程目标、课程结构、课程内容都将随着时代的发展而变革。”“教科书”应体现科学性、基础性和开放性。

?? b.开放题课堂教学中的数学观即对数学本质的认识,教师的数学观直接影响着他的教学观。如果教师能用动态的、全面的观点来理解数学,那么他所采用的教学方法就会是启发式的,其教学观就是以学生为中心。

(2)开放题对教师角色的转变:? 在开放题教学中,教师的角色定位,即在教学过程中,教师不是教学活动的主角,而是“编剧”和“导演”;不是知识的传授者,而是教学内容和教学活动的设计者、促进者、示范者、组织者、调控者。

?? 在开放题教学中,应特别强调的是教师除要具备传统意义上的那些专业素质外,还应具有创造能力(尤其是进行创造教学的能力)和自觉反省自身数学观、教育价值观和教学观的意识。

三、开放题的特点

① 问题的条件常常是不完备的;

② 问题的答案是不确定的,具有层次性。

③ 问题的解决策略具有非常规性、发散性和创新性。

④ 问题的研究具有探索性和发展性。

⑤ 问题的教学具有参与性和学生主体性。由于开放题没有固定的标准答案,这就使教师在课堂教学中难以使用“灌输式”的教学方法,学生主动参与解题活动不但成为可能,而且是非常自然和必要的。一些学生希望老师与学生一起来分享这种成功的喜悦,任何一个好教师都不会压制学生的这种愿望,这就使课堂教学自然地走向了以学生主动参与为主要特征的开放式的教学。案例:设计花坛。

四、开放题的分类

(1)设计条件的开放?? 传统的答题模式多数是条件与结论——对应的定式训练,解题时不必考虑条件的由来。然而现实生活中人们得到的信息对于某个具体问题而言绝大多数是无用的,必须善于从大量信息中筛选出有用的信息。因此有意设计一些条件过剩或不足的开放题会更好地完善学生的认知结构。若设计成求一个三角形面积(单位:分米),则效果不大一样。

(2)设计结论的开放?? 这类题的条件和问题都很明确,而结论却不惟一,具有发散性和多面性。例如:将“如一把木块平均分成三块完全一样的长方体后表面积增加了多少(单位:厘米)”的常规题去掉图中虚线,则成结论开放题。

(3)设计策略的开放?? 这类题解题思路多种多样。教学时应充分利用其开放功能,引导学生多角度地进行思考,以培养学生思维的发散性和灵活性。??

五、开放题的功能

?美国加里福尼亚指出了开放性问题的五个功能:

?1、开放性问题为学生提供了自己进行思考并用他们自己的数学观念来表达的机会,这和他们在数学学习中的发展是一致的。

?2、开放性的问题要求学生构建他们自己的反映而不是选择一个简单的答案。

?3、开放性问题允许学生表达他们对问题的深层次的理解,这在多项选择中是无法做到的。

?4、开放性问题鼓励学生用不同的方法去解决问题,反过来要求老师用不同的方法解释数学概念。

?5、开放性问题的模式是数学课堂教学的基本成份。

六、开放题的教育价值观

开放题作为一种具有特殊形式的数学问题,与一般的数学问题一样,也具有知识教育价值。开放题最突出的、人们谈论最多的是:它有利于培养学生发散思维和创造能力。这也是开放题教育价值最核心的内容和最主要的体现。目前人们普遍认为素质教育的核心是培养创新精神和创造能力,而开放题教学是推进数学素质教育的一个切 入点和突破口。这从一个侧面反映了开放题在培养创造能力方面所具有的巨大教育价值。

从结构形式上看,开放题具有组成要素的非完备性和解题答案的不确定性;从解答过程和解题策略看,开放题具有发散性、探究性、层次性、发展性、创新性等特性。开放题的特性决定了开放题教学的开放性,因而在这种教学环境中,学生是以知识的主动发现者、探索者和研究者的身份出现,学生不再是“装”数学,而是“搞”数学,这就可以使他们在一定程度上去体验数学家进行数学研究的活动过程,深切领会数学的实质,有利于形成正确的数学观念和数学意识,掌握数学的灵魂——思想方法,为今后的学习以及成人后用数学的思想方法、思维方式来解决问题做准备。

开放题在激发学生学习的兴趣,树立学习的自信心,凸现学生的主体意识,形成的人格和克服困难、勇于探索的意志品质,培养群体意识和合作精神,增强竞争机制,培养探索意识和创新意识,形成正确的科学态度等方面,具有极大的优势。可见开放题的人文教育价值也很大。

七、开放题的设计艺术:

?? 数学开放题的教学需要开放和设计大量的开放性问题,与当前的数学教学实际密切相关且被广大数学教师认可的开放性问题。 开放题设计模型的优点和误区可由下面的框图描述:

开放题的优点 开放题认识误区

① 开放题顺应开放化的社会需要 ②开放题教学可以使全体学生主动参与,符合素质教育面向全体学生的要求③开放题可以使学生更全面地理解数学的本质,体会数学的美感④开放题可以给予学生更多的体验成功的机会,增强学习自信心,激发学生学习数学的兴趣 ⑤开放题有助于培养学生的创造意识和创新能力⑥开放题追求卓越,有助于培养学生的优化意识,提高解决问题的能力 ⑦开放题教学是以学生为中心,有利于实现教学,建立新型的师生关系⑧学生解答开放题时不但要综合运用、重组已学的知识,而且时常需考虑问题解决的策略,对自己的解题活动进行认识、评价和监控,这有助于发展学生的元认知⑨教师在研究开放题的过程中,可以在教学观念、解题能力、扩大知识面等多方面得到提高,这有利于提高教师素质? ①开放题在单一的技能训练、知识学习上费时费力,效率较低 ②开放题教学易受课时的制约,在课堂上常常出现学生的思维在低层次上重复,不易进行深入的研究 ③开放题教学对教师的要求较高,不易推广 ④对有些开放题很难制定出客观公正的评分标准,故在用开放题作考试题时困难重重 ⑤现有的适合教学使用的开放题数量太少,开发和设计更多的数学开放题又面临较多困难 ⑥受考试文化的影响,要使更多的教师重视、认识、接受开放题,还有一段艰巨漫长的道路要走

在开放题的编制、开发中,要十分重视开放题的设问方式。语言的暗示性要恰当,防止将思维导入歧途;要把握问题的开放度,不同水平的学生应采用不同的设问方式,提出不同的解题要求;开放题中所包含的事件应为学生所熟悉,其内容是有趣的,是学生所愿意研究的,是通过学生现有的知识能够解决的可行的问题;要注意问题的可发展性,给学生一个提问题的机会,也许比解题本身更重要。

八、开放题的解题艺术:

1、传统教学法解题摸式??????????????

这种解题模式,学生在得出结论后没有自我反馈的过程,去发现总练习题的内在联系,总结经验,找出规律,举一反三,因而浪费了大量的宝贵信息。

2、反馈教学法的解题模式

在反馈教学法解题模式中特别注重解题后的自我反馈和自我小结。引导学生去发现习题中潜在的知识信息,去联想、归纳、类比,以寻找知识间的联系、巩固和发展教学思想方法和处理技巧,重视培养学生的思维与创造思维能力

结束语

数学开放题不应该排斥传统教学,它是传统教学的一种补充。通过教学开放题实践体会到:数学开放题只是为学生高层次思维的发展提供了一种可能性;数学开放题对学生的要求很高,不仅要求学生有较高认知水平,还要有较强的主动参与意识,才能有开放的气氛;在教学过程中,不仅要求教师能放开,还要求教师收得回来,这样才能收放自如。只有在教学实践中逐步摸索经验,才能真正有效地体现数学开放题的教育价值。

第四篇 中学数学创新教育探索_数学论文

?? 摘要:创新教育是知识经济时代教育的主旋律,也是新世纪发展的必然。数学教育在新世纪的竞争中担当着非常重要的角色。如何充分发挥数学学科特点和作用,实现数学素质教育和数学人文素质教育,是新世纪探索的主题,数学作文为学科综合、学科渗透、创新精神和实践能力的培养创造了良好的契机。

关键词:创新 数学作文

1、 背景

1.1 21世纪数学的作用

教科文组织将世纪之交的2000年定为“世界数学年”(wmy)。

在历史上是第一次用学科来命名一个年代,其宗旨是“使数学及其对世界的意义被社会所了解,特别是被普通大众所了解。”

在21世纪,数学的作用不仅表现在科学技术之中,在社会发展中也将大显身手,成为构筑当代文明的基石。王梓坤院士在《今日数学及其应用》中指出:数学与人类文明同样古老,有文明就必须有数学,缺乏数学不可能有科学的文明,数学与文明同生并存以至千古。数学将是社会变化的有力工具。

数学的确定性,使它成为一种国际规范语言,保证人们准确进行信息交流,数学将从单纯的学科发展成为信息时代的一种普通技术。

数学的严谨性和抽象性特征,使数学所具有的文化价值,历来受到人们的重视。王梓坤院士指出:今日的数学对国家的贡献不仅在于国富,还在于民强。数学给予人们的不只是知识,更重要的是能力,数学思维与思想方法有助于提高全的科学文化素质,是人类巨大的精神财富。所以,数学是21世纪公民的重要素质。Www.meiword.com

1.2 现代数学教学观

传统教育把“传道、授业、解惑”当作基本使命,教育就是把基本知识、技能传授给学生,以培养能够适应社会的下一代,所以知识就是目的。这种模式就是应试,升学!而知识增量的加速,知识外储化的趋势,以及伴随知识不断更新而出现的终身教育和全民教育思潮的兴起,对以知识为中心的教育提出了挑战。教育再也不被限于传授知识,更重要的是要培养学生获取知识的能力。培养学生的理想、热情、信心、责任感等。

从创造的角度讲,知识为创造提供了材料支持。获取知识的能力,即科学的思维方法和学习方法,为创造提供了技术支持。非智力因素,即情商为创造提供了动力支持。这一切正是创新的源泉,是个人发展不竭的动力。进而知识在教育中的地位发生了变化:教育是以育人为中心,是以活生生的、整体意义上的人格为中心。

1.3 教育发展的需要。

社科院四川分院研究员查有梁在《论新世纪的新教育》一文中指出,21世纪教育的发展方向为:和平发展教育、终身素质教育和科学人文教育。这是新世纪的三大特点,彼此交叉渗透,走向整合。新世纪的素质教育落实,必须实施科学人文教育。科学类课程,包括理工学科和技术学科在内的课程;人文类的课程包括文史哲学科,以及音乐、美术、艺术在内的课程。20世纪的教育中,由于文理的严重分割,形成素质有明显缺陷的两类知识分子群体:科学知识分子和人文知识分子。这两类知识分子存在一条难以理解沟通的鸿沟。科学人文教育是新世纪新教育的价值观,有科学精神的人文教育,才是有价值的人文教育;有人文精神的科学教育,才是有价值的科学教育。科学教育与人文教育,两者紧密相关,在新世纪应相互渗透,走向整合。在数学教学中,数学作文为学科综合、学科渗透创造了良好的契机。

2、 数学作文

2.1 作文。简单的说,作文就是写文章,多指学生练习写作。作为名词“作文”一般指学生作为练习时所写的文章。

从小学到中学,作文几乎都是语文单科的专利,作文的内容丰富多彩,文体也别具一格,如说明文、记叙文、议论文、散文、诗歌等。

2.2 数学作文。简单地界定,数学作文就是学生写自己2024学习数学的体验与收获的文章,其内容一般应是学生通过老师的教、自己的学和探索的过程,根据自己的体验、感受和收获,来揭示数学的本质,揭示数学素质教育的功能,揭示数学的知识价值、文化价值、应用价值,甚至是更高层的理性价值。可简单地认为:数学作文可以是对数学现象、数学问题的看法、认识和探索;可以是对数学中简洁、统一、对称等美的认识和感受;可以是对数学学习兴趣、动机、方法、思想等的感想和反思;可以对数学知识、教师教学等的批判性思考;可以是对数学思想方法和数学知识的应用探索,跨学科应用、整合的理解;可以是科学与人文的整合的创新,甚至是由数学而产生的科学幻想和猜想,……就文体来讲,数学作文也可以是说明文、记叙文、应用小论文、议论文、诗歌、散文、故事等。

2.3 数学作文题设计与实施应遵循的原则

2.3.1 双主体原则

教师主体、学生主体的双主体原则是设计和实施作文的关键。教师应充分挖掘教材、教法,广泛阅读和理解相关内容,精心设计引言,并在实施过程中,积极指导,开拓学生思路。学生是学习的主体,要主动参与,积极思想,充分发挥其主观能动性和创造性。

2.3.2 科学性原则

教师设计作文题应当遵循学生目前的认知结构水平,充分考虑学生知识结构的有序性和适应性,要遵循学生的认知规律,遵循学生具备的知识和经验。学生一般从感性到理性,从具体到抽象;再由抽象上升到具体(理性具体)的认知程序。感性材料既是形成表象的基础,又是引导学生抽象概括和理性的起点。所以,在设计和实施前应为学生提供丰富的感性材料,比如鲜活的生动的事例、图片、图形、幻灯、录像、教具等,并要考虑如何引导学生进行、比较、综合、归纳、演绎、抽象、概括等,从而丰富数学内涵。

2.3.3 学生自愿参与性原则

设计时既考虑学生的认知基础又要给学生思考的余地,让学生感受到自己是可以完成的,又因为数学作文题是数学新问题,还没有形成重要的经验和教学目标、内容及完整的评价体系,尚处探索之中,应当遵循学生自愿参与的原则,比如在选修课、活动课等校本课程中开设作文训练课,它将是有益的探索,也将有光明的前景。

2.4 数学作文的评价初探

总之,评价是主观的,是难驾驭的,但其目的——促进学生全面发展是明确的,对数学作文的评价总结以下三个原则:

2.4.1 激励性原则

学生学习的本质是为了人的发展,激励性原则将产生强有力的内驱力和外驱力,促使学生对数学产生浓厚的兴趣和良好的动机,有利于对数学深入的学习和探索,也有利于综合学习。

2.4.2开放性原则

对学生的数学作文,没有象学生在语文高考作文那样的评判等级,最好也不去产生。因为数学有它本质的特征,笔者认为,只要是学生原始的、真实的感受和大胆的猜想,都给予充分肯定,即使学生的观点、结论是错误的,只要他说得有道理,都当评定为优秀作文。数学作文中,没有差生。评价项目多一点,就可能多出一批各有所长的好学生。

2.4.3 美学原则

在《唯物论与经验判断论》中,说我们对某种事物的感觉是人对客观事物的主观反映。则可以说人对客观事物的审美评价就是美,即使是丑的东西,我们也可以从批判性的角度来认识其中的美的存在。对数学作文的评价,应从各个维度去表扬学生,发现学生的创造力和创新意识。

2.5 数学作文题目的设计与实施

2.5.1 选题

选题应遵循前面的原则,下面谈一点体会:

选题可以只从某一角度入手,也可以从某一事物的各个维度入手。涉及到智育、德育、美育、心理、动手能力等方面,让学生有广阔的切入点。教师可以从知识、方法、问题、变式训练、课外活动、数学史话等具体事物入手,选定有意义的题目。

2.5.2 写引言

引言,相当于材料,通过老师深入地和理解,并查阅相关理论、科学的资料,把所选题目阐述清楚,并作出有益的引导,开拓学生的思维空间和思考方向。

2.5.3 实施

把写好的材料发给学生,让学生操作,一般给三天左右时间,保证学生有充足的时间查阅相关资料,进行反思、,完成较高质量的文章。

2.5.4 批阅,交流,总结

学生交作文后,教师认真评阅,对每一篇文章指出其闪光点,找准学生的创意和有益的地方,并作出评议,给出恰当的评语。然后组织学生进行小组交流,一般一个小组4—6人为宜,相互交流,包括创作的动机、思想和结果。这样极大地调动了学生的积极性,更重要的是发生了思想根源上的交流与碰撞,将产生巨大的创造力。学生的潜力是无限的,有时它比老师的认识还要深刻,还要深远!最后总结,发现同学们的变化令人欣慰;他们实现了学科综合,涉足宽广,他们浓烈的兴趣和对数学的热爱,他们对数学知识思想、方法的更深刻的了解,他们的创新思想,……都让我感激不已,这是多年来教学中从未有过的现象。

2.6 数学作文实施的意义

2.6.1 数学作文的探索可能是中学教改的有益探索。社会科学与自然

科学的渗透和结合,是新世纪教育发展的必然,学科综合是教改的必然。

数学作文从各个侧面渗透,从而实施素质教育。比如美育教育,这是最不好实施的目标,但在学生的作文中,自己对数学美的体验和见解可以入木三分。(例文略)21世纪的课程改革应当适应全球经济、、文化的发展,素质教育是21世纪教育的主流,相应的数学观、数学教学观的改革已迫在眉睫。

2.6.2 它是校本课程开发的重要内容

我校作为“国家首批示范性高中”在课程改革上迈出了大步伐,国家

课程、选修课程、校本课程共同发展,为国家培养高级管理、高级技术的后备人才。“数学作文”作为活动课程,在实施的半年中产生了很大的效益。

2.6.3 学生的数学素质得到了提高

首先是对数学的兴趣更高,更加热爱数学了,兴趣与爱好更广泛了,因为在参与数学作文中,都得到了肯定和表扬,数学作文没有差生。在数学作文中有利于培养学生的人格与人品,保护他们的自尊与自强,激发他们的与梦想。其次,数学成绩普遍提高。因为有了兴趣,方法改进,学得更扎实,更有信心。再次,学生对数学的本质认识更加深刻,从作文中发现学生从不同角度的认识都给老师们提出了挑战!

2.6.4 对教师提出了更高要求

在实施中,数学通过广泛的学习,2024整理资料、利用现代化的信息手段,写出了令人深思的文章,甚至是有很多新名词、新事物、新观念,让我们老师深感知识上的不足和涉及范围不广,给我们提出了挑战。这样激发教师不断进行继续教育,提升自己,向科研型方向转化。

培养兼备高尚品德与聪明才干,兼备“创新精神”与“实践能力”,具有鲜明个性且善于合作的一代新人,是时代对教育的要求,是社会对教师的期望。

2.6.5 发展学生的个性

相信人人都有才,努力挖掘每个学生的发展潜能。不是每一个学生在数学成绩上都是姣姣者,有的同学甚至数学分数很低,但他(她)在数学作文中表现的独到超过了高分同学。每个人都有进步的愿望,每个人都有丰富的潜能,每个人都有自己的智能优势。数学作文提供了一个广阔的舞台,充分展示学生的个性,每一个参与的学生都能得到发展!

3、反思

数学作文题,是数学教学中的新问题,需要全社会积极投入、探索,完善它的目标、内容、评价原则,从而在数学教学中占有一席之地,它将是一片沃土,孕育无限的创新!

第五篇 小学数学竞赛活动与素质教育_数学论文

小学数学竞赛活动与素质 教育 本来不是一对矛盾,但随着素质教育的观念不断深入人心,素质教育的活动不断开展,就出现了把小数竞赛活动与素质教育对立起来的倾向,认为既然搞素质教育,就必须面向全体学生,竞赛活动是少数学生参与的活动,小学是打基础的阶段,要面向每一个学生,所以不能再搞面向少数学生的竞赛活动了。我认为这些观点有失偏颇。下面就这个 问题 谈点个人肤浅的认识。

一、素质教育的深刻内涵到底是什么

勿用置疑,我国由"应试教育"向素质教育转轨肯定是正确的,也是非常及时的,这是提高整个中化民族文化素养的需要。但我们的教育再不能再忽左忽右的错误,一提素质教育,就把它与英才教育对立起来,把全面 发展 与个性发展对立起来,并把全面发展简单地理解为平均发展,搞教育上的平均主义,没有正确认识受教育的机会平等与教育平等的关系,这样做,势必要压制部分学生的才能,不利于学生的个性发展,更谈不上培养跨世纪的创新人才了。大家知道,二十一世纪综合国力的竞争,是 科学 技术的竞争,是人才的竞争,谁掌握了未来世界上最先进的科学技术,谁就拥有了未来世界。这正如国院在《2024深化教育改革全面推进素质教育的决定》中所指出的那样:"国力的强弱越来越取决于劳动者的素质,取决于各类人才的质量和数量。"这里"人才的质量"应该指的是具有创新精神的高质量的人才。早在1995年就指出:"创新是一个民族进步的灵魂,是国家兴旺发达的不竭动力。"他进一步强调:"要鼓励和支持冒尖,鼓励和支持当领头雁,鼓励和支持一马当先。wWW.meiword.cOm"长立也在最近的一篇文章中谈到:"培育创新意识,弘扬民族创新精神,应该从学校教育抓起,从小抓起。"由此可见,培养众多具有创新精神的杰出人才,是我国教育的当务之急。所以,我认为,素质教育的深刻内涵,并不是要我们培养一大批乌合之众,而是要我们除了面向全体学生,培养全面发展的学生以外,还要培养出大量的具体有科学精神和创新意识的人才,为我国"实施科教兴国战略奠定坚实的人才和知识基础"。

二、小数竞赛活动的育人功能决定了它在素质教育中的重要地位

数学是一切学科的基础。"数学是科学的大门和钥匙"(培根语)。 科技 的发展, 时代 的进步,迫切需要提高全体国民的数学素质。而小学数学竞赛活动在其中能起到积极的推动作用。这是因为这一活动具有以下特点:

1. 基础性。数学竞赛活动来源于课堂知识,没有超出《大纲》规定的范围,有很强的基础性。一般来讲,竞赛 内容 都是课本上那些星号题和思考题,是本来就该让那些"吃不饱"的学生掌握的知识,这样,竞赛活动不但能促使学生 学习 课堂知识,还能使教学内容得以引申,从而提高教学效果。

2. 趣味性。前苏联教育家苏霍姆林斯基曾指出:"在人的心灵深处,都有一种根深蒂固的需要,这就是希望感到自己是一个发现者、 研究 者。而在儿童的精神世界中,这种需要则特别强烈"。小学数学竞赛活动正满足了学生的这种需要。在新奇有趣的这知识和巧妙奇特的解题 方法 面前,同学们被数学所展示的神奇智慧与 艺术 般的魅力所吸引,探索、求知的欲望被最大限度地调动起来。在求解数学 理论 的过程中,既能体会到百思不得其解的困惑和寻求解题方法的艰辛,又能体会灵感突临的惊喜和科学发现的乐趣,从而激发出钻研数学的浓厚兴趣和解决疑难问题的渴望。

3. 竞争性。未来 社会 是一个充满竞争的社会,我们的教育必须从小就向学生灌输竞争思想,使竞争意识与儿童的成长同步进行。心 理学 家托伦斯曾做过竞争条件下学生创造性思维的实验,结果表明,每个年级的学生在思维灵活性、清晰性和流畅性等方面都远远优于非竞争条件下的情况。我们的竞赛活动正为学生提供了一个竞争的机会,它能极大地激发同学们奋发向上的精神,培养他们追求真理和克服困难、百折不挠的思想品质。

4. 超前性。数学能力是儿童超出各科知识之前首先表现来的能力,并极具发展潜力,数学竞赛活动为他们提供了一个施展才能的舞台,使得他们不拘泥课本,突破思维定势,敢于创新,养成良好的思考问题的习惯,把数学发展潜力转化为现实的数学能力,使那些天资优异的孩子们的才华得以最充分的开发。

正是由于小数竞赛活动具备如此的育人功能,所以这一活动从开展以来,一直深受广大学生及家长的欢迎,也深受社会各界有识之士的重视。

三、数学竞赛活动是数学学科教学体系中的重要一环

我个人认为,小学数学教学结构应构成一个完整的体系,这个体系应该是:数学学科课--数学活动课--数学兴趣课--数学竞赛活动。它由低级向高级 发展 ,由基础向高深延申,从而构成一个坚实的宝塔结构,其中的竞赛活动就是这个宝塔的塔顶。在这一体系中,数学学科课和数学活动课尽管教学的要求不尽相同,但它们都是法定的教学 内容 ,都有法定的教学时间,都是面向每一个学生的教学,也就是"下要保底"的教学;而数学兴趣课和数学竞赛活动则是"上不封顶"的教学。因此,我们的数学竞赛活动应当以数学学科课为基础,以数学活动课为阵地,以数学兴趣课为助推器,它不能脱离课堂教学,也不能自成体系。这样,既保证了全体学生学好数学的基础知识,提高数学素质,又能促使那些具有数学天赋的学生脱颖而出。可见,好的小数竞赛活动不仅无碍素质 教育 ,而且为更好地实施素质教育起到巨大的推动作用。可以认为,小数竞赛活动是锻炼学生意志,培养学生创新精神的重要手段之一。当然,任何活动搞得不好容易出现偏差,所以我们搞小数竞赛活动必须要有明确的育人目的,必须通过正当渠道,必须采取有效方式进行,不能偏离素质教育的主航道。那种为了竞赛而竞赛,不考虑学生的年龄特征和实际情况,一味进行拔高的作法,我们是坚决反对的。从实践看,我校学生在全国性和地区性的小数活动中都是按照这些作法去做的,并取得较好的成绩。以1999年全国小学奥赛为例,我校19人参赛,18人获奖,其中三人获满分奖,创我校 历史 之最,也创麻城历史之最。三个获满分的学生还组成代表队于8月份在参加全国小学生"99我爱数学少年夏令营"。一个学校有资格组成一个代表,这在麻城历史上是绝无仅有的,在全国也是少见的。通过这些竞赛活动,不但这些学生的数学天赋得以充分挖掘,数学能力得到很好的锻炼,而且他们的综合素质,尤其是思想品质也得到全面提高,并且由此激发起全校学生 学习 数学、钻研数学的热情,为我校素质教育向纵深发展注入了活力。

第六篇 数学史与数学教育( HPM) 的一个案例———刘徽的“割圆术”与微积分_数学论文

[摘 要]?刘徽的“割圆术”是

??

[关键词]?刘徽;割圆术;无限;可积?

??

《高等数学》[?1?]?在讲授数列极限概念之前,介绍了我国古代数学家刘徽的割圆术中极限思想,进而引入数列极限的描述定义.?实际上,刘徽借“割圆术”方法,凭借其高超的对无限问题的理解和致用的处理方式,以“不可分量可积”前提、“夹逼准则”等知识证明了圆的面积公式,运算中包含着微积分的思想.?另外要指出的是,他利用证明圆面积公式所设计出的机械性的算法程序,求得的圆周率的近似值———徽率(157÷50).?郭书春先生认为,刘徽在世界上最先把无穷小分割和极限思想用于数学证明.?[2?]?

1? 刘徽的“割圆术”?

我国古代数学经典《九章算术》第一章“方田”中有我们现在所熟悉圆面积公式“半周半径相乘得积步”.?魏晋时期数学家刘徽为证明这个公式,于公元263?年撰写《九章算术注》,在这一公式后面写了一篇长约1800?余字的注记———“割圆术”.?

“??割之弥细,所失弥少.?割之又割,以至于不可割,则与圆周合体而无所失矣!?觚面之外,犹有余径,以面乘余径,则幂出弧表.?若夫觚之细者,与圆合体,则表无余径.?表无余径,则幂不外出矣.?以一面乘半径,觚而裁之,每辄自倍,故以半周乘半径而为圆幂.?”[3?]?

2? 几点注记?

在证明这个圆面积公式的时候有两个重要思想,一个就是我们现在所讲的极限思想.?第二个是无穷小分割思想.?

2.1? 数列极限的夹逼准则?

刘徽利用割圆术证明圆的面积公式时,用了“夹逼准则”(squeeze? the orem)?.?他从圆内接正6?边形开始割圆,设圆面积为s0?,半径为r?,圆内接正n?边形边长为l?n?,周长为l?n?,面积为s?n?,将边数加倍后,得到圆内接正2?n?边形的边长、周长、面积分别记为:?l2?n?、l2?n?、s2?n?.?

刘徽用“勾股术”得[4?]?:?

若知l?n?,则可求出圆内接正2?n?边形的面积:??

刘徽认为,“觚面之外,犹有余径,以面乘余径,则幂出弧表”:?

s2?n?

“若夫觚之细者,与圆合体,则表无余径.?表无余径,则幂不外出矣.?”?

limn?→∞s2?n?

即在n?趋于无穷大时,圆内接正多边形的面积就是圆面积.?

2.2? 折中的无限分割方法?

2024量可分的两种假定,在 2.4? 目的是证明圆面积公式而非求圆周率?

刘徽费尽周折,殚精竭虑创立包含着朴素微积分的割圆术,目的只是为证明圆的面积公式,从而他说:此以周、径,为至然之数,非周三径一之率也.?为此他同样使用割圆术中的数据,提出了求圆周率近似值的程序.?于是得到下表:?

利用,s2?n?

得到:314×64/625

由s0?=1/2l?r?,得l≈2?s2?n/r=?628.?故π=628/200=?3.14.?

2.5?hpm?的思想?

科学 史上的诸多事实都显示出无穷概念的巨大重要性和深远 影响 .?实数系的逻辑基础在十九世纪末叶才被建立的事实之所以令人惊奇,正是因为人们在理解无穷这个概念上所遇到的巨大困难造成的.对无穷的思考并试图理解它和准确地定义它,是对人类智慧的一个挑战.?古希腊以降,无穷的概念就引起了先哲们的注意,但它固有的超越人类有限思维的特征,使得人们对它理解的进展十分缓慢.?希尔伯特曾说过,无穷是一个永恒的谜.?直到19?世纪,柯西和魏尔斯特拉斯给出极限的精确定义为止,人们都无法逾越这一思维中的结症.?

因为极限的“ε2”定义,术语抽象且符号陌生,其中的辩证关系不易搞清.?这个概念中内含诸多玄机.它简练外表,隐藏了2000?余年来人类面对无限的困惑和努力.?这个定义包含着“动与静”的辩证法,包含着从有限到无穷的飞跃,包含着纯洁的数学美.?

个体的认识 规律 会“重演”数学史的 发展 历程,因此在教学中,学生 自然 会提出的一系列 问题 :既然极限描述性定义简单明白,为什么要搞个“ε2”定义??它与描述性定义有什么不同??数学家怎么会想出这种“古怪而讨厌”的定义??正如r?·柯朗和h?·罗宾所说:“初次遇到它时暂时不理解是不足为怪的,遗憾的是某些课本的作者故弄玄虚,他们不作充分的准备,而只是把这个定义直接向读者列出,好象作些解释就有损于数学家的身份似的.?”要弄清这些问题,只有翻开数学史,从 哲学 的角度认识极限法,这样不仅能帮助我们搞清极限的概念,也有助于建立正确的数学观念.?

极限的精确定义和是微积分的 理论 基石.?但是要在几堂课内讲清楚困扰人类2000?余年极限问题,确实是个难题,hpm?也许是他山之石.?比如通过开辟第二课堂,或在课上,介绍刘徽“割圆术”中的微积分思想,对极限定义的理解将会大有裨益.?

[参 考 文 献]?

[1?]同济大学数学教研室.?高等数学(上册,第四版)?[m]?.?:高等 教育 出版社,2000?,33?-?34.?

[2?]郭书春.?

猜你喜欢